故障现象
前段时间,试用了一个名为wishlist的ssh客户端,这是一个ssh的目录服务,提供基于命令行界面的ssh会话管理。它可以自动加载~/.ssh/config中的配置,并提供基础的检索功能。 用了几次之后,发现有个ssh主机连接时,会报错:
Wishlist
Something went wrong:
ssh: handshake failed: possible man-in-the-middle attack: knownhosts: key mismatch - if your host's key
changed, you might need to edit "/home/xxxx/.ssh/known_hosts"
Press any key to go back to the list.
但是通过系统自带的openssh客户端连接这个主机却没有任何问题。
ssh somesshserver
Last login: Xxx Xxx XX xx:xx:xx xxxx from 192.168.2.1
~ ⌚ xx:xx:xx
尝试删除known_hosts的对应记录,通过wishlist再连接就成功了。这时候,通过openssh的客户端连接依然是成功的。 这时候,再把known_hosts的对应主机记录删除,通过openssh客户端连接,会提示新hostkey,接受后,连接成功:
╰─➤ ssh somesshserver
The authenticity of host '[xxxxxxx]:xx ([xxx.xxx.xxx.xxx]:xxxx)' can't be established.
ED25519 key fingerprint is SHA256:I9+oq5xcfhQYgntxB+MJSor5JhxTuxxxxxxxxHVzThw.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[n.003721.xyz]:7127' (ED25519) to the list of known hosts.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Last login: Xxx Xxx XX xx:xx:xx xxxx from 192.168.2.1
~ ⌚ xx:xx:xx
这时,再用wishlist连接该主机,故障重现,依旧提示有中间人攻击的可能。
故障分析
根据上述故障重现过程,可以大致分析出问题可能是wishlist不接受openssh客户端接受的那个key。进一步检查发现,openssh客户端接受的host key是 ssh-ed25519 类型的,而wishlist接受的是ecdsa-sha2-nistp256。 wishlist是golang客户端实现的,为了搞清楚背后的逻辑,可以走查golang下ssh host key校验的逻辑。
代码分析
ssh连接示例
一个基本golang连接ssh示例代码如下:
package main
import (
"bytes"
"fmt"
"log"
"golang.org/x/crypto/ssh"
)
func main() {
var hostKey ssh.PublicKey
// An SSH client is represented with a ClientConn.
//
// To authenticate with the remote server you must pass at least one
// implementation of AuthMethod via the Auth field in ClientConfig,
// and provide a HostKeyCallback.
config := &ssh.ClientConfig{
User: "username",
Auth: []ssh.AuthMethod{
ssh.Password("yourpassword"),
},
HostKeyCallback: ssh.FixedHostKey(hostKey),
}
client, err := ssh.Dial("tcp", "yourserver.com:22", config)
if err != nil {
log.Fatal("Failed to dial: ", err)
}
defer client.Close()
// Each ClientConn can support multiple interactive sessions,
// represented by a Session.
session, err := client.NewSession()
if err != nil {
log.Fatal("Failed to create session: ", err)
}
defer session.Close()
// Once a Session is created, you can execute a single command on
// the remote side using the Run method.
var b bytes.Buffer
session.Stdout = &b
if err := session.Run("/usr/bin/whoami"); err != nil {
log.Fatal("Failed to run: " + err.Error())
}
fmt.Println(b.String())
}
Dial函数
ClientConfig 中定义了hostkey的回调函数, 这个函数将在Dial里触发 (ssh/client.go):
func Dial(network, addr string, config *ClientConfig) (*Client, error) {
conn, err := net.DialTimeout(network, addr, config.Timeout)
if err != nil {
return nil, err
}
c, chans, reqs, err := NewClientConn(conn, addr, config)
if err != nil {
return nil, err
}
return NewClient(c, chans, reqs), nil
}
NewClientConn 函数
Dial里的代码调用NewClientConn 函数(ssh/client.go):
func NewClientConn(c net.Conn, addr string, config *ClientConfig) (Conn, <-chan NewChannel, <-chan *Request, error) {
fullConf := *config
fullConf.SetDefaults()
if fullConf.HostKeyCallback == nil {
c.Close()
return nil, nil, nil, errors.New("ssh: must specify HostKeyCallback")
}
conn := &connection{
sshConn: sshConn{conn: c, user: fullConf.User},
}
if err := conn.clientHandshake(addr, &fullConf); err != nil {
c.Close()
return nil, nil, nil, fmt.Errorf("ssh: handshake failed: %w", err)
}
conn.mux = newMux(conn.transport)
return conn, conn.mux.incomingChannels, conn.mux.incomingRequests, nil
}
clientHandshake函数
NewClientConn里调用了clientHandshake函数 (ssh/client.go):
func (c *connection) clientHandshake(dialAddress string, config *ClientConfig) error {
if config.ClientVersion != "" {
c.clientVersion = []byte(config.ClientVersion)
} else {
c.clientVersion = []byte(packageVersion)
}
var err error
c.serverVersion, err = exchangeVersions(c.sshConn.conn, c.clientVersion)
if err != nil {
return err
}
c.transport = newClientTransport(
newTransport(c.sshConn.conn, config.Rand, true /* is client */),
c.clientVersion, c.serverVersion, config, dialAddress, c.sshConn.RemoteAddr())
if err := c.transport.waitSession(); err != nil {
return err
}
c.sessionID = c.transport.getSessionID()
return c.clientAuthenticate(config)
}
newClientTransport函数
clientHandshake里调用newClientTransport函数(ssh/handshake.go):
func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
t.dialAddress = dialAddr
t.remoteAddr = addr
t.hostKeyCallback = config.HostKeyCallback
t.bannerCallback = config.BannerCallback
if config.HostKeyAlgorithms != nil {
t.hostKeyAlgorithms = config.HostKeyAlgorithms
} else {
t.hostKeyAlgorithms = supportedHostKeyAlgos
}
go t.readLoop()
go t.kexLoop()
return t
}
newClientTransport里需要注意的是,它设置了hostKeyAlgorithms,然后走到kexLoop.
supportedHostKeyAlgos
假如在入口的ssh.ClientConfig中没有传入HostKeyAlgorithms,代码就会默认使用supportedHostKeyAlgos。supportedHostKeyAlgos(ssh/common.go)定义了host key相关算法的排序,后续会根据这个顺序从服务端提供的hostkey里匹配客户端支持的第一个算法类型。具体的算法类型顺序如下所示:
var supportedHostKeyAlgos = []string{
CertAlgoRSASHA256v01, CertAlgoRSASHA512v01,
CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01,
CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01,
KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521,
KeyAlgoRSASHA256, KeyAlgoRSASHA512,
KeyAlgoRSA, KeyAlgoDSA,
KeyAlgoED25519,
}
kexLoop函数
再回到newClientTransport里调用的kexLoop函数(ssh/handshake.go):
func (t *handshakeTransport) kexLoop() {
write:
for t.getWriteError() == nil {
var request *pendingKex
var sent bool
for request == nil || !sent {
var ok bool
select {
case request, ok = <-t.startKex:
if !ok {
break write
}
case <-t.requestKex:
break
}
if !sent {
if err := t.sendKexInit(); err != nil {
t.recordWriteError(err)
break
}
sent = true
}
}
if err := t.getWriteError(); err != nil {
if request != nil {
request.done <- err
}
break
}
// We're not servicing t.requestKex, but that is OK:
// we never block on sending to t.requestKex.
// We're not servicing t.startKex, but the remote end
// has just sent us a kexInitMsg, so it can't send
// another key change request, until we close the done
// channel on the pendingKex request.
err := t.enterKeyExchange(request.otherInit)
t.mu.Lock()
t.writeError = err
t.sentInitPacket = nil
t.sentInitMsg = nil
t.resetWriteThresholds()
// we have completed the key exchange. Since the
// reader is still blocked, it is safe to clear out
// the requestKex channel. This avoids the situation
// where: 1) we consumed our own request for the
// initial kex, and 2) the kex from the remote side
// caused another send on the requestKex channel,
clear:
for {
select {
case <-t.requestKex:
//
default:
break clear
}
}
request.done <- t.writeError
// kex finished. Push packets that we received while
// the kex was in progress. Don't look at t.startKex
// and don't increment writtenSinceKex: if we trigger
// another kex while we are still busy with the last
// one, things will become very confusing.
for _, p := range t.pendingPackets {
t.writeError = t.pushPacket(p)
if t.writeError != nil {
break
}
}
t.pendingPackets = t.pendingPackets[:0]
t.mu.Unlock()
}
// Unblock reader.
t.conn.Close()
// drain startKex channel. We don't service t.requestKex
// because nobody does blocking sends there.
for request := range t.startKex {
request.done <- t.getWriteError()
}
// Mark that the loop is done so that Close can return.
close(t.kexLoopDone)
}
kexLoop中有两个函数需要关注,一个是sendKexInit,另一个是enterKeyExchange。
sendKexInit
sendKexInit(ssh/handshake.go):
func (t *handshakeTransport) sendKexInit() error {
t.mu.Lock()
defer t.mu.Unlock()
if t.sentInitMsg != nil {
// kexInits may be sent either in response to the other side,
// or because our side wants to initiate a key change, so we
// may have already sent a kexInit. In that case, don't send a
// second kexInit.
return nil
}
msg := &kexInitMsg{
CiphersClientServer: t.config.Ciphers,
CiphersServerClient: t.config.Ciphers,
MACsClientServer: t.config.MACs,
MACsServerClient: t.config.MACs,
CompressionClientServer: supportedCompressions,
CompressionServerClient: supportedCompressions,
}
io.ReadFull(rand.Reader, msg.Cookie[:])
// We mutate the KexAlgos slice, in order to add the kex-strict extension algorithm,
// and possibly to add the ext-info extension algorithm. Since the slice may be the
// user owned KeyExchanges, we create our own slice in order to avoid using user
// owned memory by mistake.
msg.KexAlgos = make([]string, 0, len(t.config.KeyExchanges)+2) // room for kex-strict and ext-info
msg.KexAlgos = append(msg.KexAlgos, t.config.KeyExchanges...)
isServer := len(t.hostKeys) > 0
if isServer {
for _, k := range t.hostKeys {
// If k is a MultiAlgorithmSigner, we restrict the signature
// algorithms. If k is a AlgorithmSigner, presume it supports all
// signature algorithms associated with the key format. If k is not
// an AlgorithmSigner, we can only assume it only supports the
// algorithms that matches the key format. (This means that Sign
// can't pick a different default).
keyFormat := k.PublicKey().Type()
switch s := k.(type) {
case MultiAlgorithmSigner:
for _, algo := range algorithmsForKeyFormat(keyFormat) {
if contains(s.Algorithms(), underlyingAlgo(algo)) {
msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algo)
}
}
case AlgorithmSigner:
msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algorithmsForKeyFormat(keyFormat)...)
default:
msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, keyFormat)
}
}
if t.sessionID == nil {
msg.KexAlgos = append(msg.KexAlgos, kexStrictServer)
}
} else {
msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
// As a client we opt in to receiving SSH_MSG_EXT_INFO so we know what
// algorithms the server supports for public key authentication. See RFC
// 8308, Section 2.1.
//
// We also send the strict KEX mode extension algorithm, in order to opt
// into the strict KEX mode.
if firstKeyExchange := t.sessionID == nil; firstKeyExchange {
msg.KexAlgos = append(msg.KexAlgos, "ext-info-c")
msg.KexAlgos = append(msg.KexAlgos, kexStrictClient)
}
}
packet := Marshal(msg)
// writePacket destroys the contents, so save a copy.
packetCopy := make([]byte, len(packet))
copy(packetCopy, packet)
if err := t.pushPacket(packetCopy); err != nil {
return err
}
t.sentInitMsg = msg
t.sentInitPacket = packet
return nil
}
sendKexInit里将hostKeyAlgorithms赋给ServerHostKeyAlgos。
enterKeyExchange
enterKeyExchange(ssh/handshake.go)
func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
if debugHandshake {
log.Printf("%s entered key exchange", t.id())
}
otherInit := &kexInitMsg{}
if err := Unmarshal(otherInitPacket, otherInit); err != nil {
return err
}
magics := handshakeMagics{
clientVersion: t.clientVersion,
serverVersion: t.serverVersion,
clientKexInit: otherInitPacket,
serverKexInit: t.sentInitPacket,
}
clientInit := otherInit
serverInit := t.sentInitMsg
isClient := len(t.hostKeys) == 0
if isClient {
clientInit, serverInit = serverInit, clientInit
magics.clientKexInit = t.sentInitPacket
magics.serverKexInit = otherInitPacket
}
var err error
t.algorithms, err = findAgreedAlgorithms(isClient, clientInit, serverInit)
if err != nil {
return err
}
if t.sessionID == nil && ((isClient && contains(serverInit.KexAlgos, kexStrictServer)) || (!isClient && contains(clientInit.KexAlgos, kexStrictClient))) {
t.strictMode = true
if err := t.conn.setStrictMode(); err != nil {
return err
}
}
// We don't send FirstKexFollows, but we handle receiving it.
//
// RFC 4253 section 7 defines the kex and the agreement method for
// first_kex_packet_follows. It states that the guessed packet
// should be ignored if the "kex algorithm and/or the host
// key algorithm is guessed wrong (server and client have
// different preferred algorithm), or if any of the other
// algorithms cannot be agreed upon". The other algorithms have
// already been checked above so the kex algorithm and host key
// algorithm are checked here.
if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
// other side sent a kex message for the wrong algorithm,
// which we have to ignore.
if _, err := t.conn.readPacket(); err != nil {
return err
}
}
kex, ok := kexAlgoMap[t.algorithms.kex]
if !ok {
return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
}
var result *kexResult
if len(t.hostKeys) > 0 {
result, err = t.server(kex, &magics)
} else {
result, err = t.client(kex, &magics)
}
if err != nil {
return err
}
firstKeyExchange := t.sessionID == nil
if firstKeyExchange {
t.sessionID = result.H
}
result.SessionID = t.sessionID
if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil {
return err
}
if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
return err
}
// On the server side, after the first SSH_MSG_NEWKEYS, send a SSH_MSG_EXT_INFO
// message with the server-sig-algs extension if the client supports it. See
// RFC 8308, Sections 2.4 and 3.1, and [PROTOCOL], Section 1.9.
if !isClient && firstKeyExchange && contains(clientInit.KexAlgos, "ext-info-c") {
supportedPubKeyAuthAlgosList := strings.Join(t.publicKeyAuthAlgorithms, ",")
extInfo := &extInfoMsg{
NumExtensions: 2,
Payload: make([]byte, 0, 4+15+4+len(supportedPubKeyAuthAlgosList)+4+16+4+1),
}
extInfo.Payload = appendInt(extInfo.Payload, len("server-sig-algs"))
extInfo.Payload = append(extInfo.Payload, "server-sig-algs"...)
extInfo.Payload = appendInt(extInfo.Payload, len(supportedPubKeyAuthAlgosList))
extInfo.Payload = append(extInfo.Payload, supportedPubKeyAuthAlgosList...)
extInfo.Payload = appendInt(extInfo.Payload, len("[email protected]"))
extInfo.Payload = append(extInfo.Payload, "[email protected]"...)
extInfo.Payload = appendInt(extInfo.Payload, 1)
extInfo.Payload = append(extInfo.Payload, "0"...)
if err := t.conn.writePacket(Marshal(extInfo)); err != nil {
return err
}
}
if packet, err := t.conn.readPacket(); err != nil {
return err
} else if packet[0] != msgNewKeys {
return unexpectedMessageError(msgNewKeys, packet[0])
}
if firstKeyExchange {
// Indicates to the transport that the first key exchange is completed
// after receiving SSH_MSG_NEWKEYS.
t.conn.setInitialKEXDone()
}
return nil
}
enterKeyExchange里findAgreedAlgorithms找出服务端和客户端算法中相同的第一项,然后取出对应的key,在t.client(kex, &magics)调用hostKeyCallback做校验。
findAgreedAlgorithms
findAgreedAlgorithms(ssh/common.go)
func findAgreedAlgorithms(isClient bool, clientKexInit, serverKexInit *kexInitMsg) (algs *algorithms, err error) {
result := &algorithms{}
result.kex, err = findCommon("key exchange", clientKexInit.KexAlgos, serverKexInit.KexAlgos)
if err != nil {
return
}
result.hostKey, err = findCommon("host key", clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos)
if err != nil {
return
}
stoc, ctos := &result.w, &result.r
if isClient {
ctos, stoc = stoc, ctos
}
ctos.Cipher, err = findCommon("client to server cipher", clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer)
if err != nil {
return
}
stoc.Cipher, err = findCommon("server to client cipher", clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient)
if err != nil {
return
}
if !aeadCiphers[ctos.Cipher] {
ctos.MAC, err = findCommon("client to server MAC", clientKexInit.MACsClientServer, serverKexInit.MACsClientServer)
if err != nil {
return
}
}
if !aeadCiphers[stoc.Cipher] {
stoc.MAC, err = findCommon("server to client MAC", clientKexInit.MACsServerClient, serverKexInit.MACsServerClient)
if err != nil {
return
}
}
ctos.Compression, err = findCommon("client to server compression", clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer)
if err != nil {
return
}
stoc.Compression, err = findCommon("server to client compression", clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient)
if err != nil {
return
}
return result, nil
}
findCommon
这里的findCommon(ssh/common.go):
func findCommon(what string, client []string, server []string) (common string, err error) {
for _, c := range client {
for _, s := range server {
if c == s {
return c, nil
}
}
}
return "", fmt.Errorf("ssh: no common algorithm for %s; client offered: %v, server offered: %v", what, client, server)
}
client函数
enterKeyExchange里以t.client(kex, &magics)方式调用的client函数(ssh/handshake.go):
func (t *handshakeTransport) client(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
result, err := kex.Client(t.conn, t.config.Rand, magics)
if err != nil {
return nil, err
}
hostKey, err := ParsePublicKey(result.HostKey)
if err != nil {
return nil, err
}
if err := verifyHostKeySignature(hostKey, t.algorithms.hostKey, result); err != nil {
return nil, err
}
err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
if err != nil {
return nil, err
}
return result, nil
}
这里触发了hostKeyCallback回调函数的执行。 到这一步,go的ssh类库就已经实现客户端和服务端的hostkey校验算法协商,并选择了一个服务端的HostKey提交给回调函数hostKeyCallback进行校验。
FixedHostKey
再来看看回调函数执行了什么逻辑。文章开头的那个例子里的回调是ssh.FixedHostKey(ssh/client.go):
type fixedHostKey struct {
key PublicKey
}
func (f *fixedHostKey) check(hostname string, remote net.Addr, key PublicKey) error {
if f.key == nil {
return fmt.Errorf("ssh: required host key was nil")
}
if !bytes.Equal(key.Marshal(), f.key.Marshal()) {
return fmt.Errorf("ssh: host key mismatch")
}
return nil
}
// FixedHostKey returns a function for use in
// ClientConfig.HostKeyCallback to accept only a specific host key.
func FixedHostKey(key PublicKey) HostKeyCallback {
hk := &fixedHostKey{key}
return hk.check
}
简单判断服务端的key是否和代码传入的key相匹配。这种案例和known_hosts没有关系。
通用hostkey回调
可以通过一个通用的host key回调函数来模拟wishlist的判断逻辑:
func hostKeyCallback(e *Endpoint, path string) gossh.HostKeyCallback {
return func(hostname string, remote net.Addr, key gossh.PublicKey) error {
kh, err := os.OpenFile(path, os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0o600) //nolint:mnd
if err != nil {
return fmt.Errorf("failed to open known_hosts: %w", err)
}
defer func() { _ = kh.Close() }()
callback, err := knownhosts.New(kh.Name())
if err != nil {
return fmt.Errorf("failed to check known_hosts: %w", err)
}
if err := callback(hostname, remote, key); err != nil {
var kerr *knownhosts.KeyError
if errors.As(err, &kerr) {
if len(kerr.Want) > 0 {
return fmt.Errorf("possible man-in-the-middle attack: %w - if your host's key changed, you might need to edit %q", err, kh.Name())
}
// if want is empty, it means the host was not in the known_hosts file, so lets add it there.
fmt.Fprintln(kh, knownhosts.Line([]string{e.Address}, key)) //nolint: errcheck
return nil
}
return fmt.Errorf("failed to check known_hosts: %w", err)
}
return nil
}
}
这里用knownhosts的New进行判断:
func New(files ...string) (ssh.HostKeyCallback, error) {
db := newHostKeyDB()
for _, fn := range files {
f, err := os.Open(fn)
if err != nil {
return nil, err
}
defer f.Close()
if err := db.Read(f, fn); err != nil {
return nil, err
}
}
var certChecker ssh.CertChecker
certChecker.IsHostAuthority = db.IsHostAuthority
certChecker.IsRevoked = db.IsRevoked
certChecker.HostKeyFallback = db.check
return certChecker.CheckHostKey, nil
}
CheckHostKey里对HostKey是fallback到db.check里做检查:
// check checks a key against the host database. This should not be
// used for verifying certificates.
func (db *hostKeyDB) check(address string, remote net.Addr, remoteKey ssh.PublicKey) error {
if revoked := db.revoked[string(remoteKey.Marshal())]; revoked != nil {
return &RevokedError{Revoked: *revoked}
}
host, port, err := net.SplitHostPort(remote.String())
if err != nil {
return fmt.Errorf("knownhosts: SplitHostPort(%s): %v", remote, err)
}
hostToCheck := addr{host, port}
if address != "" {
// Give preference to the hostname if available.
host, port, err := net.SplitHostPort(address)
if err != nil {
return fmt.Errorf("knownhosts: SplitHostPort(%s): %v", address, err)
}
hostToCheck = addr{host, port}
}
return db.checkAddr(hostToCheck, remoteKey)
}
调用checkAddr:
// checkAddr checks if we can find the given public key for the
// given address. If we only find an entry for the IP address,
// or only the hostname, then this still succeeds.
func (db *hostKeyDB) checkAddr(a addr, remoteKey ssh.PublicKey) error {
// TODO(hanwen): are these the right semantics? What if there
// is just a key for the IP address, but not for the
// hostname?
// Algorithm => key.
knownKeys := map[string]KnownKey{}
for _, l := range db.lines {
if l.match(a) {
typ := l.knownKey.Key.Type()
if _, ok := knownKeys[typ]; !ok {
knownKeys[typ] = l.knownKey
}
}
}
keyErr := &KeyError{}
for _, v := range knownKeys {
keyErr.Want = append(keyErr.Want, v)
}
// Unknown remote host.
if len(knownKeys) == 0 {
return keyErr
}
// If the remote host starts using a different, unknown key type, we
// also interpret that as a mismatch.
if known, ok := knownKeys[remoteKey.Type()]; !ok || !keyEq(known.Key, remoteKey) {
return keyErr
}
return nil
}
如果known_hosts文件里没有对应服务端主机的hostkey,返回一个空的keyErr,也就是说之前没有针对这个主机确认过hostkey,这种情况下wishlist的逻辑是默认接受这个hostkey,并追加known_hosts文件。 如果known_hosts文件有这个主机的hostkey,会将涉及到这个主机的所有hostkey以算法类型为key构建一个字典,然后根据服务端提供的hostkey的算法类型在这个字典中查找对应的key,假如这个存在这个key,取出它,和服务端的hostkey比对,两者一致才能最终返回nil,表示匹配成功。
案例推演
用文章开头的故障例子,假设服务端只有两个hostkey,一个是ssh-ed25519,一个是ecdsa-sha2-nistp256。通过openssh客户端连接后,known_hosts文件里记录了ssh-ed25519的指纹。这时,再用wishlist去连接,由于wishlist以supportedHostKeyAlgos里定义的hostkey算法顺序从服务端匹配hostkey,它获取到的服务端hostkey是ecdsa-sha2-nistp256。而known_hosts文件根据这个主机生成的字典里只有一个ssh-ed25519类型的hostkey,自然和ecdsa-sha2-nistp256的key匹配不上,结果就是提示中间人攻击。
附录
算法类型常量
https://github.com/golang/crypto/blob/master/ssh/certs.go const ( CertAlgoRSAv01 = “[email protected]” CertAlgoDSAv01 = “[email protected]” CertAlgoECDSA256v01 = “[email protected]” CertAlgoECDSA384v01 = “[email protected]” CertAlgoECDSA521v01 = “[email protected]” CertAlgoSKECDSA256v01 = “[email protected]” CertAlgoED25519v01 = “[email protected]” CertAlgoSKED25519v01 = “[email protected]”
// CertAlgoRSASHA256v01 and CertAlgoRSASHA512v01 can't appear as a
// Certificate.Type (or PublicKey.Type), but only in
// ClientConfig.HostKeyAlgorithms.
CertAlgoRSASHA256v01 = "[email protected]"
CertAlgoRSASHA512v01 = "[email protected]" )
CertAlgoECDSA256v01 对应 [email protected]
var certKeyAlgoNames = map[string]string{ CertAlgoRSAv01: KeyAlgoRSA, CertAlgoRSASHA256v01: KeyAlgoRSASHA256, CertAlgoRSASHA512v01: KeyAlgoRSASHA512, CertAlgoDSAv01: KeyAlgoDSA, CertAlgoECDSA256v01: KeyAlgoECDSA256, CertAlgoECDSA384v01: KeyAlgoECDSA384, CertAlgoECDSA521v01: KeyAlgoECDSA521, CertAlgoSKECDSA256v01: KeyAlgoSKECDSA256, CertAlgoED25519v01: KeyAlgoED25519, CertAlgoSKED25519v01: KeyAlgoSKED25519, }
KeyAlgoED25519 对应CertAlgoED25519v01,也就是 [email protected]
QingYo